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ABSTRACT

Zero-sum budgeting, downsizing, and increased mission requirements make it more

challenging for U.S. Navy leaders to understand the short and long-term consequences of their

decisions.  An enterprise model of the Navy could provide decision-makers with a tool to study

how their decisions might affect the Navy's ability to conduct worldwide operations.  Agent-

based simulation technology provides a flexible platform to model the complex relationships

between the Navy's many components.  Agent-based modeling uses software agents to define

each relevant entity of the system.  These agents have the ability to interact with their

environment and learn or adapt their behaviors while trying to achieve their goals.  The

aggregate of these interactions results in identifiable behavior patterns known as emergent

behaviors.  This thesis looks at two methods of designing the underlying architecture for a

simple agent-based simulation.  A classic predator-prey relationship is modeled using a

Windows/C++ implementation and a dynamically extensible Bamboo implementation.  While

the Windows/C++ implementation is straightforward, it requires definition of all agents before

run-time.  Bamboo is more challenging to implement, but allows the introduction of agents on

the fly, and can easily be extended for distributed implementation.  Both appear to be viable

implementation architectures for an enterprise model of the Navy.

Two simulations were developed as part of this joint master thesis for Major Mark A.

Boyd, USA and Lieutenant Todd A. Gagnon, USN.  Major Boyd took the lead in the

development of the Windows/C++ architectural implementation.  LT Gagnon was responsible

for the development of the Bamboo architectural implementation.
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I. INTRODUCTION

A. MOTIVATION

Every day the Navy’s top leaders make key decisions affecting the flow of money

from its sources down to its resources.  These decisions have certain consequences that

impact the Navy’s overall warfare capability, which is a direct measure of the Navy’s

ability to meet the global needs of the nation.  Today, with the current trend of military

downsizing and zero-sum budgeting, each decision made has a greater effect on the

Navy’s various components and their abilities to maintain the levels of readiness needed

for a strong, effective force.  Often, the effects of budget decisions may not be felt for a

number of years.  Under the current process, budget planners regularly make key

decisions with neither the time nor ability to fully model how these decisions might affect

the Navy in the future.  An enterprise model of the U.S. Navy that contained the proper

relationships between the Navy’s budget allocation and its warfare capability could assist

leaders in understanding the potential consequences of various decisions.  This insight

would help those individuals make more informed decisions in the future.

For years, the entertainment industry has developed modeling and simulation

technology that in some ways surpassed comparable technology developed by the

Department of Defense (DoD).  The DoD normally develops modeling and simulation

technology that differs greatly in use from that of the entertainment industry, but has

realized that much of what the entertainment industry produces can replace, or enhance

DoD technology with significant cost savings.  A recent study published by the National

Research Council (NRC), “Modeling and Simulation: Linking Entertainment and

Defense,” calls for the DoD to work with and learn from entertainment companies to

better meet the DoD modeling and simulation requirements of the future [1].  As a result

of this study, the Director of Naval Training (N7) requested an enterprise model of the

U.S. Navy be developed that leveraged expertise from the entertainment industry.

The first decision required in the process was to determine what type of modeling

technology existed in the entertainment industry that would provide the best approach for

modeling the U.S. Navy.  The Navy is a constantly evolving, complex system made up of

many entities with sometimes-conflicting goals.  To model this system requires an
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architecture that supports that evolution and the intricate interactions of the various

components.  After some consideration, it was determined that agent-based modeling,

which has been used in the private and commercial sectors to successfully model large-

scale, complex systems, would provide the best capabilities with which to develop an

enterprise model of the U.S. Navy.  This thesis explores some of the fundamental issues

associated with developing an architecture for agent-based simulations.

B. BACKGROUND

Simulations are used to explore outcomes without having to become involved in

expensive, time-consuming, or sometimes dangerous activities.  Within this framework,

simulations provide a way to answer questions, practice skills, or rehearse actions.

Simulations also provide a platform to manipulate things in ways that are impossible to

do with real systems.  They can be started, stopped, restarted with new assumptions, and

allow the introduction of entities that do not exist in the real world.  Various techniques

for modeling systems have been around as long as humanity.  They have evolved from

arranging stones to model the passing of the seasons, as seen at Stonehenge [2], to highly

complex computer models like the flight simulators used to train pilots.

The fidelity built into a model depends on the kinds of questions the model needs

to answer.  The spectrum of fidelity ranges from aggregated or high-level models that

might be used to study a military corps-level, force-on-force battle, to high-resolution or

low-level models that might be used to study the human interactions of a peacekeeping

operation.  The ability to increase the fidelity of models has paralleled the development

of high-speed computers.  As processors and memory have gotten bigger, faster, and less

expensive, modelers have been able to build simulations that are more intricate.

Although this capability exists, high-resolution models are not appropriate in every

circumstance.  They are, however, particularly applicable to modeling systems where

representation down to the entity level is pertinent.

Not only is capturing entity level interaction important to the result, but so is

studying how these entities adapt and adjust based on these interactions.  The resulting

complexity of these kinds of simulations led to the development of agent-based

simulations.  Because agent-based simulations represent the dynamics of non-linear
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interactions and adaptive behaviors, they provide an outstanding environment to practice

decision-making skills, and conduct training and rehearsals [3].

C. AGENT-BASED MODELING

Complex natural environments or complex systems present researchers trying to

model and study them with many difficult issues.  Many real world systems, often

referred to as complex adaptive systems, include individual or local entities that have the

ability to adapt to their environment and change their techniques for interacting with

other local entities.  A perfect example of this is the Earth, which has thousands of types

(species) of individuals each with its own rules for interacting with and adapting to its

environment.  Over time, species adapt to ensure they accomplish their goal, which for

most, is simply the survival of the species.  The adaptive properties of the individuals

often affect the system as a whole in variable and unpredictable ways; basically, the

behavior of the whole system does not equal the sum of the individual components’

behaviors.  This phenomenon is known as emergent behavior, and when modeling certain

systems tends to render traditional deterministic or stochastic modeling techniques

inferior.

A common method of studying complex adaptive systems is through the use of

computer simulations - called adaptive, agent-based simulations.  Researchers trying to

model their system can develop adaptive software agents that represent individual entities

each with its own rules that describe how it should interact with its environment.  What

makes the agent adaptive is that it can revise its rules of behavior based on what it has

learned from previous interactions. Adjusting its rules as it learns means the agent

ensures that similar or repeated interactions will certainly produce different outcomes

each time.   Provided each agent is properly studied and modeled, the system as a whole

will exhibit the same emergent behaviors as would be found in the real world providing

the researcher with many insights to the behaviors of the entire system.

Agent-based simulations are most commonly used for entertainment and training.

They provide an environment where a player, or person using the simulation, can view

the potential consequences of their decision.  Perhaps the most widely recognized

entertainment applications are the simulation games produced by Maxis, in particular,



4

SimCity Classic and SimCity 2000, which together have sold nearly six million copies,

making them among of the best selling computer games of all time [4].  While gaming is

a big market for agent-based models, the same technology is gaining popularity for

training people on the dynamics of everything from budgeting to crowd control.

In the SimCity games, a player is "given a plot of barren land to zone into

industrial, residential, and commercial areas.  As the city grows, the player must deal

with crime, education, and health issues by strategically placing police stations, schools,

and hospitals.  Manage traffic, the budget, and the needs of the constituents, or face riots,

ridicule in the press, and eventual impeachment!" [5]  The entity level interactions are

controlled through an agent-based implementation; agents are the constituents.  If a

residential zone is provided water and electricity, people will build homes there.

Population growth will stagnate unless industrial and commercial zones are designated

facilitating the growth of schools, police, fire and medical protection, jobs and leisure

opportunities.  If an area becomes too crowded or is not properly balanced; agents

interact causing riots, shifting the populations to more attractive locations, and possibly

leaving the city altogether.  Much like a real city, these simulated cities persist while

there is constant change taking place.

Although SimCity is an entertainment application, the use of similar agent-based

technology can provide city managers useful insight into the dynamics of city planning

where they are able to view potential consequences of  their decisions.  For example,

"What happens if we raise property taxes by 5%?", "What happens if we cut the police

force budget or remove some police stations?" or "What happens if we build a zoo on the

North end of the city?"  While these simulations will not provide direct answers to the

questions, they do provide the city manager with possible results of his actions.  As the

city manager runs through many iterations of one scenario, the new zoo for instance, he

can identify possibilities of how the new zoo might affect the city as a whole - he can

experiment.  The zoo may bring in more tourists, cause nearby developments to increase,

decrease, or stagnate, cause traffic problems, or have little effect at all.  The bottom line

is the simulation can identify potential issues the city manager might not have considered

otherwise.
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 An example of a simulation that could easily be adapted for military purposes is

CACTUS, an agent-based simulation developed to train senior police officers in the

dynamics of crowd control [6].  The training simulation used before CACTUS consisted

of a manual, pseudo-control room with incidents story-boarded before executing an

expensive, time-consuming, and inflexible training exercise.  Additionally, after action

reviews were very limited, consisting mostly of discussion based on what people could

remember and what few notes had been taken.  An agent-based simulation was

introduced because it provided a platform for more realistic incidents to develop, was less

expensive to develop, was very flexible, and could be recorded for playback [6].

The methodology behind CACTUS is easily transferable to training military

participants in the nuances of peacekeeping operations such as those now being

conducted in the republics of the former Yugoslavia.  These types of simulations provide

key players the opportunity to plan for and rehearse actions to unexpected situations that

were not realistically represented in the previous planning and training cycle.

An important note on adaptive agent-based simulations is that they do not predict

the future because as events occur, there are infinitely many new states to which the

current state of the environment may transition.  These types of simulations only suggest

individual states as possibilities and therefore do not guarantee the real world would

produce the same output.  Agent-based simulations simply provide a more abstract level

of output that should help the researcher observe and understand complex cause/effect

relationships.

D. BAMBOO

The academic and commercial sectors have developed many agent-based

simulations over time; SimCity and CACTUS are two examples.  Each of these allow

runtime interactions where users can introduce new agents, modify agents’ interaction

rules, adjust behavior parameters, increase or decrease the numbers of agents, etc.  These

interactions, although occurring at runtime, are based on a static implementation of the

simulation where all possible future capabilities were decided before the final

compilation of the executable.  This technique is reasonable if the simulation is modeling

a system or environment whose limits are well understood and static.  But, since agent-
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based simulations are often used to model highly complex, unfamiliar systems, a static

implementation can cause certain limitations.  Bamboo is a programming environment

that allows users to overcome this limitation by providing a means to dynamically add

functionality to a simulation at runtime.  Users can create new functionality and

dynamically link it to the current simulation executing without having to stop or

recompile the whole system.

To illustrate the limitations of a statically implemented agent-based simulation,

consider the scenario where a citrus farmer in southern California wishes to model an

orange grove to help understand the effects of weather, farming techniques, and local

flora and fauna on future crop yield.  The farmer gathers facts, statistics, characteristics,

and other pertinent information relating to the local environment, which, for his study,

consists of typical weather in the area and all other plants, animals, and insects that might

affect the orange crop yield.  He must consider all known enemies and benefactors in the

environment of the particular orange tree he wishes to grow.  This is important because,

like other processes that occur in nature, an orange grove is a very complex system and

the omission of one small detail may cause the simulation to produce output far from

reality.

Once the farmer has collected the information needed, he can design agents for

each entity needed to populate the simulation.  For this illustration, assume the year is

1975, and although the Mediterranean fruit fly (Medfly) has been trapped in the United

States before, California has had no confirmed captures of the pest [7].  Because of this,

the farmer never considers the Medfly as a potential threat to his orange grove, and

therefore does not design an agent to represent it in the simulation.  After spending

months researching the environment where he plans to grow his oranges, and many more

months designing and implementing a very robust agent-based simulation to model this

environment, the farmer begins his simulation.

The simulation runs for months and begins to provide great insight to potential

patterns in crop yield and tree survivability based on the interactions of all agents in the

simulation.  Now the farmer begins to see patterns that aid in planning the real world

orange grove that he may never have considered otherwise. Assume that it is now late

1975 and the Los Angeles Times announces the first confirmed capture of a Medfly in
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the southern California [6].  The farmer must now reconsider attempting to grow his

oranges in this area because the Medfly poses a serious threat and must be factored into

his strategy.  Because the simulation was originally statically implemented, the farmer

must stop the simulation, design an agent to represent the Medfly, recompile the entire

simulation, and run it all over again.

Had the farmer implemented his simulation using a dynamically extensible

executable like that provided by Bamboo, he would have been able to design a Medfly

agent and load it into the simulation while it was still running.   The agents in the

simulation would have been able to interact with new Medfly agent and vice-versa.

These new interactions would begin to produce new behaviors or patterns that might

assist the farmer in his strategic planning.  This would have saved the farmer a great deal

of time and money and provided more timely feedback.

Another example to highlight potential drawbacks of statically compiled agent-

based simulations that may be more pertinent to a military audience is a combat

simulation designed to provide insight on the expected success of various warfare tactics.

Consider a scenario where forces are to be deployed on a peacekeeping operation to a

war-torn country.  Before actually committing forces in harms way it would be very

productive to run a simulation that might provide some insight as to the potential

outcomes of the operation.  This would provide the peacekeepers with a platform to view

potential consequences of their actions and allow them to practice reacting to various

scenarios that might arise.  This pre-mission training would hopefully limit the number of

unexpected events during the execution of the actual mission.

As with the orange farmer example, the first thing the modeler of the

peacekeeping scenario must do is gather the pertinent data.  He must discover all possible

information about all forces that may be involved in the operation and the environments

where these operations might take place.  "Who are the leaders?", "What kinds of tactics

do the forces employ?", "What is the composition of the forces?", "Will they typically

fight in built-up areas or open terrain?", "What are their goals?", "What are their

constraints?" (especially pertinent to the peacekeeping force), etc., are all questions that

need to be answered to build an accurate model.
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Agents are then developed to represent entities, aggregate or individual, in the

simulation.  After running many iterations of the scenario, the modeler begins to notice

certain behaviors emerge.  He may begin to see the warring parties adapt certain tactics

because of the introduction of peacekeepers.  The warring parties may band together

against the peacekeepers, they may remain separate but all act hostile towards the

peacekeepers, some may disband or go into hiding and wait things out.  The modeler now

begins to experiment with ways to counter the new threats.

For this example, consider that the warring parties have banded together against

the peacekeepers.  The peacekeepers deploy to conduct a mission that turns into a full-

blown conflict with the warring parties.  The peacekeeping force commander calls for

assistance - armored jeeps and five-ton trucks loaded with soldiers deploy to assist.

(Requests by the commander to have tanks and infantry fighting vehicles available were

denied before the initial operation ever began, so they were not built into the simulation.)

The situation continues to escalate with the peacekeeping forces being divided and their

reinforcements being blocked.  As the scenario continues the peacekeepers begin taking

heavy casualties.

The simulation has shown that there is potential for a violent conflict, something

neither the commander nor his superiors anticipated.  It has also shown that resources

currently available to the peacekeeping force commander are potentially not adequate to

handle extreme situations.  The commander has the simulation run again, this time with a

reaction force of tanks and infantry fighting vehicles.  Since the simulation was restarted

under different conditions, a conflict similar to the one witnessed in the previous run may

or may not emerge.  The commander does not know if this is simply a new outcome or

the result of the introduction of new resources.  What he really needed to know was how

the employment of the tank and infantry fighting vehicle reaction force might have

affected the outcome of that scenario.  He needed the ability to introduce them as he saw

the situation develop.  If the operation had been developed using a Bamboo

implementation, the tanks and infantry fighting vehicles could have been introduced “on

the fly”, thereby allowing the commander to see behavior patterns develop based on the

introduction of new resources.
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The simulation provides the commander with a tool to view situations as they

arise that he may not have even considered.  He can view potential outcomes, and with a

Bamboo implementation, see how weapons not originally included in the simulation

might actually impact the outcome of the mission.  At that point he can either come up

with new courses of action or go back to his superiors and request additional resources,

because he has seen the potential for the mission to evolve into more than a peacekeeping

operation.

The last two examples are fictional and contrived, but hopefully serve to illustrate

that agent-based simulations can benefit a great deal from the dynamic extensibility that

Bamboo offers.  Bamboo provides the mechanisms where users or systems themselves

can modify the executables on the fly without having to stop the simulation and

recompile.  Bamboo was originally designed to facilitate the development of real-time,

networked virtual environments, and one can immediately see the potential for

developing networked agent-based simulations where users from around the world could

design and introduce their own agents into a commonly shared virtual environment

through the Internet.

E. SUMMARY OF CHAPTERS

The remainder of the thesis is organized as follows:

• Chapter II:  Agent-Based Modeling.  Discusses a definition for agent-based

models to include:  the purpose of agent-based models, what makes an agent-

based model different than other models, and what constitutes an agent-based

model.

• Chapter III:  Bamboo.  Discusses the current implementation of Bamboo and

how its capabilities are suited for dynamically extending virtual environments

and simulations.

• Chapter IV:  Architecture.  Describes the development of a basic agent-based

simulation architecture, modeling the predator-prey relationship, using both a

Windows/C++ and Bamboo implementation.
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• Chapter V:  Conclusions.  Discusses the limitations discovered during

development and provides ideas as to future work that might be completed in

this area.
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II. AGENT-BASED MODELING

A.       INTRODUCTION

Agent-based models, known by many different names to include bottom-up

models, individual-base models, artificial social systems, or behavior-based models, are

used to study everything from the stock market to ant colonies to the human immune

system [2].  Regardless of their name, their purpose is to allow users to gain an

understanding, through analysis, of the processes that appear in different complex

systems [8].

At the core of agent-based simulations are independent software agents that

represent the model down to the entity level.  These agents populate an environment and

interact with each other and the environment.  Each agent has the ability to adapt or learn

from these interactions - they evolve over time.  While each agent has a relatively small

number of possible behaviors, the sheer number of possible interactions and outcomes

greatly increases the complexity of these simulations.  The complexity is further

increased by the inherent non-linearity of those interactions and typically produces

unpredictable large-scale effects.  These large-scale effects are known as emergent

behaviors [8].  Agents, their interactions and adaptability, and emergence are what

differentiate agent-based simulations from other types of simulations that typically

aggregate behaviors instead of track individuals through time [9].

B. AGENTS

An agent is simply a software object with internal states and a set of associated

behaviors [10].  Examples of what agents can represent include atoms, fish,

organizations, people, vehicles, or nations [8].  A state represents attributes or properties

of an agent such as identification number, sex, age, or geographic location.  Some states,

such as identification, are fixed for the life of the agent, while others, such as energy

level, may change over time as the agent interacts with its environment [10].  An agent's

behaviors provide a set of rules that describe how it should interact with its environment.

These rules are often represented as a set of stimulus-response combinations, and are

usually coded as IF-THEN statements [2].  An agent typically has an underlying goal
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such as food, survival, or wealth, and must navigate through the environment, modifying

its behaviors based on interactions, in an attempt to attain that goal.  The two major

characteristics of agents found in agent-based simulations are their ability to interact with

their environment, and through learning, their ability to adapt future behavior based on

these interactions.

1. Interaction

An agent interacts with its environment and coordinates with other agents in an

attempt to attain its underlying goal(s) and achieve a progressively better fit to the

requirements of the environment.  Their interactions may consist of many things to

include mating, communication, combat or partnership [8].

Many steps must occur for a single interaction to take place.  First, an agent must

sense its surroundings, or environment, in order to determine whether or not there are any

other agents with which to interact.  Sensing is limited to a set range based on the

expected real-world sensing limitations of the agent.  An agent’s sensors may be

programmed explicitly so that each sensor has its own functionality.  Another approach is

to implement sensing in an abstract manner where the agent simply knows, or can access

information about everything within its sensing range, but has no physical sensors to do

so.  This abstraction is useful when “how an agent senses” is not important compared to

simple fact that it does sense because it allows developers to aggregate many sensors that

an agent might actually use in the real world into one sensing capability.  For example,

humans use the five basic senses of touch, smell, sight, hearing, and taste to sense their

environment and decide what action to take next.  Rather than implement all five senses

separately, it is often easier to provide a human agent with the ability to simply sense, and

therefore know, everything about all other agents within its sensing range.

Once an agent has sensed its environment, it must gather information about each

agent within its range to determine what course of action is required next.  Gathering the

information is usually accomplished through one of two ways; broadcast reception and

direct interrogation.  In the first method, an agent broadcasts its own state information to

all other agents within range.  This means that an agent within sensing range of the

broadcasting agent will receive that information whether it needs it or not.  For example,
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if two humans are within sensing range of one another.  If one agent speaks, its “voice” is

broadcast to any agent within “hearing” range.  The second agent will hear that

information whether it needs it or not.  In the second method, an agent is allowed to

interrogate another agent for specific information.  Normally, the level of information

available through direct interrogation is limited by the designer to match the level of

available information that would be expected in the real world.  For example, in the real

world, when a herd of antelope are in mating season, a male antelope can sense whether a

female antelope has already been impregnated.  It makes sense then, that a male antelope

agent in a simulation should be able to interrogate a female agent for pregnancy

information and expect a valid reply.   It is possible to combine both broadcast and

interrogation techniques in an agent-based simulation since information is normally

passed both ways in the real world.

Once an agent has gathered all the needed information about other agents within

its vicinity, it must then determine what, if any, interactions it should attempt.

Interactions may include attempts to mate, flee, or form alliances.  An interaction

normally affects two or more agents, therefore the outcome of that interaction must be

determined fairly and equitably for all those involved.  While the outcomes of some

interactions are straightforward and easily determined, others, such as combat, can result

in a large number of potential outcomes.  To simplify the process, the outcome of a single

interaction is usually determined by a referee in the simulation.  A referee has access to

all pertinent information needed to decide how an interaction should affect each agent

involved.  Once an interaction has occurred and the referee has decided the outcome, the

agents involved must update their states and possibly revise their behavior rules.

Referring to the mating example above, once two agents have successfully mated, the

female’s state value for pregnant would become true, and her behavior might be

modified.  She may become territorial and avoid other agents instead of moving towards

them or she may require more food and therefore feed more.  The level to which behavior

is modified after an interaction again depends on the designer of the simulation.
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2. Adaptability

The ability to adapt, or adjust, to their environment is one of the essential

components of agents that distinguishes agent-based simulations from other traditional

simulation techniques.  Agents adapt by modifying their rules of behavior and strategies

based on what they have learned from previous interactions.  This adaptability greatly

increases the level of complexity that can be modeled.  Most agents modeled in a

simulation will use two forms of adaptability, short-term and long-term, in order to attain

their desired goals.

Short-term adaptability allows an agent to adjust its behaviors to satisfy some

immediate requirement in the environment.  It normally requires the temporary

integration or switching between specific behaviors [11].  A simple example of this might

be an autonomous robot agent that encounters a physical object in its path while

attempting to relocate to a new location.  If the robot has no prior knowledge of the

object, and no generic avoidance behavior, it may collide with the obstacle.  Once the

collision has occurred, the robot will adjust its behavior by changing direction as needed

to get around the object.  The robot may alternate its behaviors between move forward

and move sideways until it has cleared the object at which time it can resume its original

goal of relocating.  Switching between these two specific behaviors during the sequence

of interactions is what makes this a short-term adaptation.

Long-term adaptation represents a higher level of learning and normally takes

place over the life of the agent [11].  From the example above, the robot has learned that

the object with which it collided is something it should avoid in the future.  It can also

remember basic information about the object, such as size and the most efficient way to

avoid the object in the future.  This means the next time the robot encounters the object

while relocating, it will be able to avoid the object while minimizing the delay from its

original goal of relocating.  Over time, the robot will develop a new behavior called

obstacle avoidance that represents a higher level of motion control compared to simply

moving forward or sideways.

Agents that do not adapt will not be able to find their niche in the environment or

achieve their goal(s).  They are the ones that will perish, whether they are stock market

agents trying to buy stock at a certain break point, military tactics agents trying to detect
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a vulnerability in an enemy’s defense, or agents representing animals in the wild just

trying to survive.  As individual agents interact and adapt, group behaviors begin to

emerge.  These emergent behaviors are what provide the modeler with a platform to carry

out the what-if scenarios and observe various outcomes.

C. EMERGENT BEHAVIORS

Entity level agents that learn from, and adapt to their environment by interacting

with each other, provide researchers with realistic and useful views of behavior patterns

that might emerge in real-world systems.  These patterns, typically referred to as

emergent behaviors, result from the aggregate interactions among, and adaptive nature of,

individual agents [12].  They "…  are often surprising because it can be hard to anticipate

the full consequences of even simple forms of interaction" [8].

A good example of emergent behaviors is an ant colony as described by D. R.

Hofstadter [2, 13].

Individual ants are remarkably automatic (reflex driven).  Most of
their behavior can be described in terms of the invocation of one or more
of about a dozen rules of the form "grasp object with mandibles, " " follow
a pheromone trail (scents that encode 'this way to food,' 'this way to
combat,' and so on) in the direction of an increasing (decreasing gradient,"
"test any moving object for 'colony member' scent," and so on. (To
actually perform computer simulation of an ant following these rules, the
description of the rules would have to be somewhat more detailed, but
these phrases give the gist.)  This repertoire, though small, is continually
invoked as the ant moves through its changing environment.  The
individual ant is at high risk whenever it encounters situations not covered
by the rules.  Most ants, worker ants in particular, survive at most a few
weeks before succumbing to some situation not covered by the rules.

The activity of an ant colony is totally defined by the activities and
interactions of its constituent ants.  Yet the colony exhibits a flexibility
that goes far beyond the capabilities of its individual constituents.  It is
aware of and reacts to food, enemies, floods, and many other phenomena,
over a large area; it reaches out over long distances to modify it
surroundings in ways that benefit the colony; and it has a life-span orders
of magnitude longer than that of its constituents (though for some species
the life-span of the queen may approximate the life-span of the colony).
To understand the ant, we must understand how this persistent, adaptive
organization emerges from the interactions of its numerous constituents.
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While an individual ant’s behavior rules are fairly small and simplistic, a complex

colony emerges from the large number of ants and their interactions with the

environment.  The colony is much more than just the sum of the individual ants.  The

emergent behaviors displayed by the ant colony are the types of behaviors that modelers

are looking for when they build agent-based simulations.  They can model the individual

entities with very basic states and behavior rules and from that alone, observe many

complex patterns as they emerge.

D. SUMMARY

Agent-based models are very useful for simulating many types of systems.  They

are particularly appropriate for modeling realistic environments that consist of many

agents interacting in a non-linear fashion.  In an attempt to achieve a better fit with the

environment, agents adapt future behaviors based on these interactions, resulting in

complexity that is typically difficult to model using stochastic or deterministic processes.

It is often more realistic and useful to provide agents with initial behaviors, let them

interact, and then observe the behaviors that emerge.  Agent-based modeling provides a

platform where those unexpected behaviors can emerge and provide analysts with greater

insight into the complexity of their models.
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III. BAMBOO

A.       INTRODUCTION

Bamboo is a toolkit that provides an application programmer’s interface (API) for

the development of real-time, networked, virtual environments (VE).   Its primary focus

is to provide a means for users to create dynamically extensible code.  This means that

applications programmed in Bamboo have the ability to dynamically reconfigure

themselves by adding to or altering their functionality during runtime.  It contains a series

of functional modules that extend its basic execution core.  Users can further extend the

execution core by adding application specific modules that provide the VE with the

desired capabilities.  Although Bamboo was designed to facilitate the development of

networked VEs, its unique features can greatly enhance traditional agent-based

simulations as well.  Dynamic extensibility is the most significant feature of Bamboo that

will provide the greatest benefit to agent-based simulations.

B. DYNAMIC EXTENSIBILITY

Dynamic extensibility was the single most influential design issue for the creator

of Bamboo [14].  Bamboo accomplishes this by implementing a plug-in metaphor much

like that popularized by commercial software companies such as Netscape Navigator

[15].  The biggest difference between Bamboo and traditional plug-ins is the fact that

Bamboo does not require an application or system re-start in order to function.  Each

Bamboo module represents a plug-in that can extend the existing execution core.  It

further extends the plug-in metaphor by adding inter-module dependencies.  Bamboo

uses the plug-in concept along with the simple but robust mechanisms of callbacks and

event handling to provide dynamic extensibility.

1. Dependency

Not only does Bamboo support the plug-in metaphor by allowing additional

functionality be added to the executable through external modules, it utilizes modules

itself to create the Bamboo runtime environment.  The core executable, or “main”

routine, contains only enough logic to page modules and provide the framework into
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which plug-ins may hook.  The remainder of the functionality in the Bamboo runtime

environment is provided through additional separate modules.

Developers who wish to use Bamboo to create a simulation simply need to create

modules that further extend the capabilities of the existing Bamboo runtime environment.

User application modules are paged into memory and become part of the current

executable.  Figure 3.1 provides an abstract view of the Bamboo core with external

modules attached to it.  This approach ensures that the programmer makes all decisions

regarding an application’s capabilities and that no decisions are forced by restrictions in

Bamboo itself.  All capabilities of an application are defined at runtime when the

application is loaded into Bamboo.

COREM
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Figure 3.1:  Bamboo runtime view

One of the main benefits of using a plug-in concept, is that it allows applications

that need certain functionality not already in memory to load the needed modules.  This is

done through a dependency list where a module specifies all other modules on which it

depends.  Modules in the dependency list that are not active in memory are simply loaded

before the application without any user interaction.  A great advantage to this approach is

that functionality that is not needed to run the current application, is not loaded into

memory thereby saving valuable resources and enhancing system performance.

Specifying every possible module on which an application depends would be

complex and difficult, so Bamboo simplifies the process by requiring an application to
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list only the immediate modules that it needs in memory.  Bamboo then manages the

system of dependencies to ensure that all required modules are loaded into memory in the

correct order.  Figure 3.2 depicts an example where module four (M4) is being loaded

into memory.  For the example, assume that the numbered modules are the application

specific modules and that M3 has already been loaded into memory.  As the system tries

to load M4, it must first verify that M2 is in memory.  Since M2 is not already in

memory, the system must load M2.  In the process of loading M2, the system must verify

that M1 is already in memory, which it is because it was loaded when M3 was loaded.

Having verified the required modules for M2, the system then loads M2, after which it

can finish loading M4 [14].

M4

M2 M3

M1M

M M M

M

M

CORE

Figure 3.2: Module dependency view

2. Callbacks

The plug-in concept of Bamboo does help facilitate dynamic extensibility of a

simulation, but the ability to extend the executable actually comes from the callback and

callback handler.  The callback is a very simple yet powerful component of Bamboo.  It

provides the framework to which new code can attach itself and be brought into the same

address space as the executable.  A callback enters the execution loop by attaching itself

to a callback handler.  A callback handler is a thread in the Bamboo runtime environment

which shares execution time with the “main” routine and other callback handlers.  A

callback handler is responsible for sequentially executing each of its attached callbacks
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every time it itself is executed.  Figure 3.3 illustrates how individual callbacks attach

themselves to a callback handler.
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Figure 3.3:  The Callback Handler

3. Event Handling

The event handler provides a useful abstraction for handling system and user

generated events.  It does so by using the callback handler to notify registered parties of

an event via callbacks.   Since Bamboo uses a callback handler for notification delivery,

multiple callbacks may be executed in response to a single event.

C. SUMMARY

Bamboo breaks the paradigm of statically defined virtual environments and

simulations by providing simple mechanisms to dynamically extend an executable.  It

accomplishes this by specifying a convention for defining new program modules,

allowing those new modules to link into the executable through the use of callbacks and

callback handlers, and by loading required modules for any new application without user

interaction.  As mentioned earlier, the ability to dynamically extend a simulation during

runtime could greatly increase the utility of traditional statically defined agent-based

simulations.
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IV. ARCHITECTURE

A.       INTRODUCTION

It is very challenging to describe the interactions among agents, especially when

the agents can modify their behaviors thereby changing their rules of interaction with

other agents.  Developing an architecture that supports this methodology is also a

daunting task.  Object-oriented programming (OOP) languages, such as C++, seem to

provide the best environment to program agent-based simulations.  OOP provides many

mechanisms that greatly facilitate the construction of agent-based models; the most

significant of these include encapsulation, inheritance, and polymorphism.  Agents and

the environment in which they exist can all be implemented as objects; structures that

hold data and procedures.[10]  An agent’s state is comprised of instance variables, while

its behaviors are defined through methods.  Inheritance provides a mechanism for

defining a base class and letting modelers define agent specific routines, whereas

polymorphism allows the modeler to redefine or extend the functionality of the base class

if needed.

One of the drawbacks to this type of implementation is the requirement to have

everything set before run time.  If a modeler wishes to add a new type of agent - one not

defined at run time - they must stop the simulation, update the code where appropriate,

and then recompile.  Bamboo appears to offer an attractive alternative to this because it

affords the modeler the opportunity to define and add new agents on the fly.

The goal of this thesis was to look at the issues associated with building

architectures for agent-based adaptive simulations.  We first designed the architecture

using the Windows/C++ programming environment because of our familiarity with this

programmer interface.  As we conducted research and the architecture began to develop,

we realized that the ability to add agents during a run could be very beneficial to the

modeler.  Discussions with Mike Zyda [16], Rudy Darken [17], and Kent Watsen [18],

encouraged us to build an architecture using Bamboo, which provides the ability to

implement this new paradigm.

With this in mind, we decided to model a simple predator-prey relationship to see

how speed affects their interactions and the survivability of each species.  This scenario
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afforded us the opportunity to fully exercise and view the core fundamentals of agent-

based modeling, namely - agents, interactions, adaptability, and emergent behaviors.  The

agents are Cheetah, Antelope, and grassy feeding areas.  Interactions between agents

included: mating, killing, avoiding, herding, fleeing, chasing, and feeding.  Through these

interactions, we were able to observe how both the Cheetah and the Antelope adapt their

behaviors to achieve their overall goal; which in this simulation was simply survival of

the species.  These interactions also lead to some emergent behaviors that we will discuss

later.

The predator-prey model is called Savannah after the African Savannah where

these real-world interactions take place each day.  Much like the real Savannah, the

simulated Antelope roam an open range in herds looking for food and potential mates,

while trying not to fall prey to any predators.  They may also die from infant mortality or

age.  The Cheetah, being solitary animals, typically avoid each other while hunting for

prey in their own territory.  The only time Cheetah come together is during mating

season, when they will seek a mate and then return to their independent lifestyle.  Like

the Antelope, they can die from age or infant mortality and also starvation.  Both Cheetah

and Antelope have simple sets of rules to govern their behavior.

As is common with many other models, this simulation does not attempt to

intricately model every detail.  To attempt to model the predator-prey relationship exactly

as it occurs in nature is unrealistic and is not the focus of this thesis.  The normal practice,

when deciding how much detail to include in the model, is to determine what is needed in

the model and implement that to a sufficient level of detail.  Since we were mainly

interested in looking at architectural issues of agent-based modeling, only a few aspects

of this relationship along with a few major components of each animal were modeled.

For instance, the interactions between the Cheetah and Antelope were modeled in terms

of the hunt-chase-kill cycle that exists for the Cheetah or the watch-flee-escape cycle that

exists for the Antelope.  As far as modeling the survivability of each species, other

relationships were modeled such as mating, infant mortality, and aging.  To further

simplify the model, some capabilities or conditions were aggregated such as sensing

ability and infant mortality.
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It is also important to note that other species, which could affect the output a great

deal, were not modeled in the main simulation.  Again, this is because the main purpose

of this thesis was not to model a Cheetah-Antelope relationship in the wild, but to

discover architectural development issues of agent-based modeling.

B. WINDOWS/C++ IMPLEMENTATION

1.  Introduction

The windows version of Savannah was developed on an Intergraph TDZ 2000,

400 MHz personal computer (PC) running the Microsoft Windows NT 4.0 Operating

System (OS) using Microsoft Visual C++ 5.0.  Visual C++ and Microsoft Foundation

Class (MFC) libraries provided a straightforward programming environment to produce a

two-dimensional 640 x 480-dpi display of Savannah.  Although the simulation was

developed on Windows NT, the precompiled version may be run on any Windows PC.

2. Interface

The user interface for Savannah was developed using Microsoft Developer Studio

97.   The display provides the user with a simple, single-document window from which to

view simulation runs.  Making changes to the simulation requires Visual C++ and the

MFC libraries.  Figure 4.1 shows a typical screen shot of the interface during a simulation

run.
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Figure 4.1: Savannah Windows/C++ Interface

The environment is initially populated with 100 randomly located Antelope and 5

randomly located Cheetah.  The Antelope are color-coded in five increments, based on

speed, using the Red-Green-Blue (RGB) spectrum.  Red are the slowest Antelope, and

blue are the fastest.  The Cheetah are colored according to gender; male being black, and

female being gray.  For ease of identification, Figure 4.1 also identifies Cheetah with a

“C”.

The simulation can be started by either using the simulation pull-down menu or

clicking on the “T” toggle button.  The toggle button allows the user to start and stop the

simulation.  The simulation pull-down menu not only provides start and stop options, but

also allows the manipulation of the simulation speed from slow to medium to fast, and

the ability to step through the simulation run.  The “S” step button, on the toolbar, also
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provides this step-through capability.  Once the simulation has been started, the agents

interact according to the architecture that is described in the following sections.

3. Architecture

a.  Overall Design

When designing any model, the first thing to accomplish is to decide what

is to be studied and to what detail.  Answering questions such as “What will the

simulation be used for?”, “How much detail is needed?”, “What issues may need to be

studied in the future?”, and “Who will use this simulation?” are often very helpful in

determining an implementation structure.

In the case of Savannah, we wanted to see how speed affects the Antelope-

Cheetah relationship and overall survivability of each species.  To develop the

architecture to support this, we initially designed the simulation using four linked lists;

one list each for the male and female Antelope and Cheetah.  Because most of the

interactions in the simulation are based on location and distance between agents, we

quickly found the linked-list implementation to be computationally prohibitive.  After

some experimentation, we settled on a hash table implementation using the Map class

from the Standard Template Library (STL).  The Map class is one of the collection

classes from the STL and provides a one-to-one mapping of a unique key value and some

associated data.  The key can be of any valid type and the data can be a simple element or

a complex data structure.  For this simulation, the agents were placed into the Map based

on their unique xy location in the virtual world.  This allowed us to easily pare the agents

that were not within sensing range when animals executed their sensing loop.

With the linked list implementation, the sensing loop required O(n2)

computations because each agent had to traverse the entire list to sense those other agents

within range.  The Map implementation required 1/x O(n2) where the scalar 1/x was

inversely proportional to the number of local groups in the simulation.  Since the agents

were able to calculate the xy boundaries of their sensing range, they could then hash into

the Map and only view those records of agents within range.  As an example, if the

simulation had 300 agents active, the linked list implementation required each agent to
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loop through all 300 records in the list so the sensing loop required 300 x 300, or 90000

steps.  In the map implementation, each agent only looped through the agents within its

sensing range so if the 300 agents were divided into 10 Antelope herds and 10 Cheetah,

then each agent would loop through an average of 30-40 agents.  This would require only

300 x 40, or 12000 steps to complete the sensing loop.  So even though the final cost may

appear to be O(n2), the hash table implementation did drastically reduce computational

costs.

The next thing we considered was how to sequence the agent behaviors

and interactions.  In initial versions of the simulation the Antelope would sense their

environment in a sensing loop and decide on what action to take.  They would then take

this action in a move loop.  After the Antelope finished both loops, the Cheetah would

then sense and take actions in the same manner.  This gave the Antelope a one-step

advantage, which would have been unrealistic and produced improper results.  Therefore,

in later versions we implemented concurrent sensing and action loops for each species.

This meant that all Cheetah and Antelope would sense their environment and decide on

their next action before any agent was allowed to move.  This resulted in interactions that

were more realistic and better matched what we would expect to occur in the real world.

b.  Agents

When developing the architecture for an agent-based simulation, it is

important to keep it as simple and generic as possible.  It must be simple so that people

can understand the underlying structure.  If they do not understand this, then it will be

very difficult to explain or make believable the complex emergent behaviors that result

from the simulation.  Making the architecture generic leads to reusability and aids

extensibility.  A generic architecture allows modelers to easily develop other agents for

smooth integration into the simulation.  Once the basic architecture is understood, adding

a new agent only requires the need to know what basic functionality must be included in

an agent.  Also, implementing a different scenario would only require subtle changes to

or extensions of existing code.  The easiest way to implement generic reusability appears

to be through OOP techniques.  Figure 4.2 shows the basic class structure that was used

in Savannah and will be discussed in detail in the following section.
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[id number, goal for next action]

Antelope
(sub class)

[id number, goal for next action]

Antelope
(sub class)

[gender, speed, age, energy level, 
location, pregnant, movement,

death indicator, generation]

Animal
(super class)

Figure 4.2:  Savannah Class Structure

c. Base Class

The agents in Savannah are designed using an abstract base class with

subclasses for each agent type.  The use of a base class allows the identification of

common characteristics and methods for all agents.  We identified appropriate common

attributes for animals and put them into the Animal base class.  The Animal class state

variables include: speed, age, generation, pregnancy state information, a mating season

flag, location, a death indicator, and energy level.  The Animal class includes methods

that allow agents to move around their environment, avoid collisions with other agents,

and virtual functions for mating and killing.  The use of virtual functions ensures that

modelers extending the base class include these functions in their specific subclass.

Speed is a statically implemented integer.  Initially, each animal is

assigned a random speed based on the minimum and maximum speed variables

determined by the modeler.  Cheetah are assigned an additional speed advantage to

account for their sprinting ability when hunting.  When a new animal agent is born, it is

assigned the speed of either the mother or the father based on a random distribution.
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The age and generation integer variables are used to track how old an

animal is, and what generation it belongs to.  Age is used to determine that an animal is

old enough to mate, and at some point can cause it to die of old age.  Initially, each

animal is assigned a random age between a minimum and maximum age variable set by

the modeler.  When a new animal agent is born, it is assigned an age of zero.  An

animal’s age increases by one unit during each simulation time step.  The generation

variable is simply a counter used to show how successful each species has been at

reproduction.  When an animal agent is born, it receives the generation value of its

mother plus one.

The pregnancy state structure, pregPtr, which is included with every

female agent, is used as a way to carry genetic information about the father.  When a new

animal is born, there is the ability to numerically identify both parents, assign it the speed

of either parent, tag a generation identifier to it, and assign it a sequential species

identification number.

The mating season flag, inSeason, simply notifies other agents that the

agent is mate eligible.  The modeler can control when a species is in mating season by

setting the appropriate integer ranges before run time.  The flag allows agents to

determine if they should attempt to mate with other agents sensed during their sensing

loop.  The ability to manipulate the length of the mating season allows the modeler to see

how shorter or longer seasons might affect the population sustainability of each species.

Location is an integer number that represents the current location of an

agent in the environment.  The use of a single integer number resulted in quicker position

conflict detection and resolution than using an xy array.  The number either conflicts or it

does not, while in an array the agent would have to look at both elements of an array for

all agents within its sensing range to determine if there is a location conflict.  While

location is a single integer, it does represent an x and y coordinate location.  These

coordinates can be returned through the getX and getY functions.

Figure 4.3 shows how a two dimensional xy location is converted and

displayed as a single integer.  The x position is the product of the maximum x value

multiplied by the y offset plus the x offset for that row as annotated by the equation:
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max(x)*offset(y)+offset(x).  In this example max x = 640, offset(y) = 206, and offset(x) =

255.  This results in an xy integer value of 16895.

Figure 4.3:  Computation of Integer xy Position

The death indicator value is a way to update an animals state indicating

how it died.  There are five legal entries to the deathIndicator field: age, mortality,

starvation, predator, and the default value of not-dead.  When an agent dies its death

indicator is set to the appropriate and the agent remains in the simulation for two time

steps so other agents can sense it to determine how it died.  When an agent reaches the

maximum age it sets its death indicator to age.  Every agent created has the probability of

dying from infant mortality.  When this occurs, that agent’s death indicator is set to
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mortality.  When an agent starves to death it sets its death indicator to starvation and

when it is killed by a predator, the predator sets the agent’s death indicator to predator.

After two simulation time steps the agent is removed from the simulation with the

destructor method.

The energy level provides a way to put boundaries on agents actions.  It

can be used to trigger short-term goals in an agent, thereby dictating a sequence of

possible actions.  If the energy level is high enough, then the agent may not have to feed

right away, but if it drops too low, the agent may have to hunt for food.  Energy can also

be used to force an agent to abandon a chase, if it expends too much energy, and rest.

Another common use for energy is to determine if an animal has starved to death.

In Savannah, only the Cheetahs are modeled with an energy level.  The

integer-based energy level is used to control their hunting desires.  In earlier versions,

before the energy level was implemented, Cheetahs could eat a large population of

Antelope in a short time; there was often no population balance.  With energy

implemented, every time a Cheetah kills an Antelope its energy level is boosted by a

predetermined amount.  The low energy level dictates the level at which the Cheetah

must rest to regain strength. An intermediate level is set high enough so the Cheetah can

start hunting again without immediately going below their low energy level.  The high

energy level acts as a hunting cut off, where once above this level, the Cheetah does not

hunt, keeping it from decimating an entire Antelope population.

The animal base class also contains the methods needed to move agents

around the environment.  There are three move functions: move, moveTo, and

moveFrom.  If an agent is not trying to move away from or towards another agent, the

move function updates the agent’s position based on the speed of its move: either rest or

regular.  If the agent is moving away from another agent, such as when an Antelope is

being chased, the moveFrom function is used to update its position.  In this chase

example, moveFrom uses the location of the Cheetah to move the Antelope in the

opposite direction based on the Antelope’s maximum speed.  Similarly, the moveTo

function is used to update an agent’s position if it is moving toward a specific agent, i.e.,

when animals are attempting to mate.
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While the agents are free to roam around the environment, the map

implementation does not allow two agents to occupy the same location.  Therefore, the

base class also has a method to avoid collisions.  This function simply checks to see if the

agent is trying to move to an occupied position, and if so calls the appropriate move

function until the agent has identified a position that is not currently occupied.  This is

also realistic in that most simulations need some kind of collision avoidance to maintain

believability of interaction between agents.

As mentioned earlier, the use of virtual functions ensures that every

developer of a subclass will define methods to describe actions needed to complete the

model.  In our implementation, we decided that determining if agents could kill or mate

were not actions that should be generalized in the base class since they tend to require

species specific attention.  The killing tradeoff between every agent pair is different and

should be decided by the developer of a specific agent.

While it may be considered an over simplification, we modeled the

Cheetah’s ability to kill Antelope based solely on proximity.  The virtual function canKill

provides the modeler with the ability to describe the agent-to-agent kill relationship in

any way they would like.  Mating was made a virtual function for the same reason.

While cross species mating was not the main concern, we felt it was important to define

the mating relationships within a specific species.  This results in finer granularity than

what could be provided in the base class.

d. Subclasses

The use of OOP in our simulation allowed us to develop a base class that

implements attributes and behaviors common to all of the agents.  In addition, the use of

the class structure provided a way to implement species specific attributes.  In Savannah,

the Antelope subclass includes information on identification, mating, creation of new

Antelope agents, and predator knowledge.  The Cheetah subclass includes information on

identification, mating, creation of new Cheetah agents, and killing.

Every agent in a simulation should have a unique identification number.

There are many reasons why the modeler would want to know information about a

specific agent.  In a map or list implementation, agents must be able to identify

themselves when iterating through loops.  This prevents them from taking illegal actions
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on themselves.  Additionally, specific identification numbers make it easy to track

information such as; movement, mating, killing, herding, and offspring creation.  In

Savannah an integer identification number, idNum, starting with one, is assigned to each

agent based on species.

Mating is also handled in each subclass because even though mating could

be described generically as either yes - they do, or no - they do not, it is more appropriate

to have the flexibility to model species specific mating attributes.  Defining mating as a

virtual function in the base class, forces the modeler to determine if a yes or no style

mating function is appropriate or if a more robust function is needed for their simulation.

This provides greater flexibility and allows for agents that are more customizable.  For

example, while some species, such as Canadian Geese, pick one mate for life, others such

as Elephant Seals mate in herds with a dominate alpha male spawning most of the

offspring.  A generic mating function could not account for the differences between both

of these examples.

In Savannah, the mating routines are very similar in the Antelope and

Cheetah subclasses.  In both, the canMate function returns a Boolean expression on the

ability of two agents to mate.  Several things factor into determining the outcome of this

Boolean logic to include: distance, age, season, species, sex, and whether or not the

female is pregnant.  If the function returns true, the agents then mate and the female agent

begins her gestation period.  Figure 4.4 shows the implementation of this logic.

Figure 4.4:  Method to Determine if Two Animals Can Mate

bool Animal::canMate(Animal &potentialMate)
{
   bool mateFlag = false;
   if(this->getGender() == MALE)
   {
      mateFlag = ((!(potentialMate.isPregnant())) &&
                  (potentialMate.getAge() >= MATE_AGE) &&
                  (this->getAge() >= MATE_AGE) &&
                  (abs(this->getX() - potentialMate.getX()) <= MATE_DISTANCE) &&
                  (abs(this->getY() - potentialMate.getY()) <= MATE_DISTANCE));
   }
   else
   {
      mateFlag = ((!(this->isPregnant())) &&
                  (potentialMate.getAge() >= MATE_AGE) &&
                  (this->getAge() >= MATE_AGE) &&
                  (abs(this->getX() - potentialMate.getX()) <= MATE_DISTANCE) &&
                  (abs(this->getY() - potentialMate.getY()) <= MATE_DISTANCE));
   }
   return mateFlag;
}
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If agents choose to mate, they will execute the mate function.  The mate

function is used to initialize the pregnancy information to include setting the females

state to pregnant, recording the male id and speed for genetic information, and starting

the gestation time counter.  The gestation counter is simply an integer counter that

increments each time step and can be set to account for species-specific gestation periods.

When the gestation period ends, a series of functions determine how many agents will be

born, and what attributes they will have.

The litter size is determined using a Normal distribution function.  Species

specific, minimum and maximum number born are entered and the conditional probably

distribution function returns an integer for the number of agents created.  To account for

infant mortality, each potential agent is then tested to see if it dies as an infant in the

diesAsInfant function.  In Savannah, infant mortality includes any agent that would die

within the first two years its life.  Since infant mortality rates are also species specific, a

floating point number from 0 to 1, representing the probability of infant mortality, must

be entered for each subclass.

To streamline the simulation, only those agents that do not die of infant

mortality are created.  However, there are still methods to track the initial litter size and

number of these that die as infants.  New agents are created in the giveBirth function.

This function assigns each new agent a species-specific integer identification number, an

integer speed from either the mother or father, and an initial xy location near the mother.

The Cheetah subclass contains an additional method for killing, canKill.

This method simply tests if the Cheetah is close enough, and has the energy, to kill the

Antelope.  Figure 4.5 shows the implementation of canKill.  This results in the slower

Antelope typically being killed off first, but also causes the slower Cheetah to eventually

die of starvation.  Successful kills result in the Cheetah manipulating the Antelope’s state;

setting its death indicator to Predator.
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Figure 4.5:   Method to Determine if Cheetah Kills Prey

While the Antelope does not require a method for killing, the subclass

does contain an additional method for acquiring predator knowledge.  This is an attempt

provide actual learning to the agent, thereby facilitating adaptation.  It is a Boolean

function that will be described in greater detail in the learning and adaptation subsection

below.

e. Agents Summary

Taking advantage of the functionality offered by the C++ class structure

appears to be an efficient methodology for representing agents.  A generic base class

offers the flexibility to extend it in order to meet almost any need.  Once the agents have

been correctly represented, their interactions need to be implemented in such a way as to

produce believable, understandable results.

4. Interactions

Agent interactions are one of the essential characteristics of agent-based models.

While the base architecture describes the state variables and methods of the agents, the

methodology used to sequence interactions is also very important to the underlying

implementation of these simulations.  If events are not properly ordered, possible

outcomes can be unrealistic, unbelievable, and very difficult to explain.

As stated above, Savannah is executed in two loops; a sensing loop and a

movement loop.  The underlying architecture to include the methods executed during

these loops has already been described.  The purpose of this section is to take a high-level

look at how and why agent interactions were prioritized.

bool Cheetah::canKill(Animal &prey)
{

bool killFlag = false;

if((abs(this->getX() - prey.getX()) <= KILL_RADIUS) &&
   (abs(this->getY() - prey.getY()) <= KILL_RADIUS))
   if(Animal::myRand() > .5)
      killFlag = true;
   else
      killFlag = false;

return killFlag;
}
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In the sensing loop, Antelope have five possible actions.  They can flee, mate,

move toward potential mates, herd, or feed.  The priority of these events is very important

to the outcome of the simulation.  If the Antelope’s first priority were always to mate,

they would typically not be looking out for predators and could easily fall prey to the

Cheetah.  We chose to prioritize the Antelope’s actions based on its current state, and

what it sensed in its environment.  The movement loop simply ensures that all agents

simultaneously executed the proper move to achieve their current goal.

If an Antelope has predator knowledge and there is a Cheetah within its sensing

range, it will always flee, no matter what the Cheetah is doing.   If an Antelope is not

fleeing and is in mating season, its next priority is to mate if it can.  If there is not a mate

in proximity and it is mating season, it will move toward the nearest mate eligible

Antelope.  If none of the above conditions exist, the Antelope will either try to move

towards other Antelope or feed.  The effect is the appearance of herding and searching for

food simultaneously.  This priority of actions seemed to result in the most realistic

behaviors and outcomes.

Once the Antelope’s desired actions are set, the Cheetah iterate through their

sensing loop.  This ensures that Cheetah are determining what action to take based on the

current state of the environment.  Cheetah have four possible actions to take including

mating, moving towards a mate, avoiding other Cheetah and hunting.  Since they have no

predators in Savannah, Cheetah will always mate if in mating season and they are close

enough to a potential mate.  Otherwise, if it is mating season they will move toward the

closest potential mate.    When not in mating season, Cheetah try to avoid each other, and

when their energy level becomes low enough, they are driven to hunt Antelope.  Again,

the Cheetah’s actions are always constrained by their energy level.

Although we set the priorities of the agents, we believe it would be more

appropriate for them to have the ability to set and adjust their own priorities.  To do this,

they must have the ability to interrogate other agents to determine other agents’ states.

For example, if an Antelope can sense a Cheetah, it should be able to tell if that Cheetah

is hunting, mating, or taking some other action.  Then the Antelope can make a more

intelligent decision on what action to take in the presence of a Cheetah, rather than
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always fleeing when it senses one.  Fleeing may cause it to be sensed when it may have

remained undetected if it had rested.

The interactions also play a major role in determining what learning and

adaptation the agents can accomplish.  By setting the priorities for the agents, it appears

we have constricted their ability to learn and therefore adapt.  The learning and

adaptation we see is Savannah is very basic.  There appears to be a fine line as to how

much guidance we should provide the agents.  It is not only very difficult to hard code all

interactions, but also limits the emergence of new behaviors.  On the other hand, if they

are just thrown in an environment with no guidance, they do nothing.  A few basic rules

to get and keep agents interacting seems to be the key to achieving true learning and

adaptive behaviors.

5. Learning and Adaptation

Providing the agents with the ability to learn and adapt their behaviors is the most

challenging component of agent-based modeling.  Once they have been given a set of

simple basic behaviors and interactions, how does one provide the agent with the ability

to learn things that can not be anticipated?  Then how can one tell if an agent is actually

learning and adapting its behaviors?  To look at these questions Savannah implements a

simple learning routine that allows the adaptive behavior to be easily recognized.  A more

robust learning implementation methodology, developed for the Bamboo implementation,

will be discussed in that section.

Savannah implements one learning routine based on a Boolean value.  This

method results in constrictive learning, because the agents appear to only have the ability

to learn things that are determined by the modeler.  However, some of the emergent

behaviors discussed in the next section indicate learning and adaptations are occurring on

levels that can not be directly traced.  To test the Boolean flag method of learning,

Antelope were provided with a “memory” field, called predatorKnowledge, to learn and

store knowledge about predators.

Predator knowledge is a Boolean that indicates the agent either does or does not

have knowledge of predators.  To test this method of learning, when Antelope agents are

created their predatorKnowlege flag is either set to true, indicating they have the
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knowledge that Cheetah are predators, or false, indicating they do not have this

knowledge.  In the simulation loop, the predator knowledge field triggers the Antelope to

flee if a Cheetah is within their sensing range.

Antelope who do not have predator knowledge are able to learn it during the

sensing loop.  During each loop an Antelope will sense all other Antelope within a

specified range and if it senses a dead Antelope, it will look at the Antelope’s state values

to see how it died.  If it died from a predator, the sensing Antelope’s predatorKnowledge

flag is set to true.  The Antelope has learned that Cheetah are bad and from then on will

adapt its behavior to flee from them if they are within its sensing range.  This learning

and adaptation cycle can be seen in figures 4.6, 4.7, 4.8, and 4.9.  Figure 4.6 shows the

entire Savannah environment.
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Figure 4.6.  Learning and Adaptation in Savannah

Figure 4.7 through 4.9 are magnified views of where an interaction results in

learning and behavior adaptation.  Figure 4.7 shows a Cheetah that is able to intermingle

with Antelope. Antelope this close to a Cheetah do not have predator knowledge and

therefore do not flee.  Figure 4.8 shows the same Cheetah just after it has killed an

Antelope.  The nearby Antelope will now observe this interaction the next time they

sense.  Figure 4.9 shows that the Antelope within sensing range of the kill are now

attempting to move out of the area.  They have learned that Cheetah are predators and

have adapted their behaviors to flee from them.
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      Figure 4.7: No Figure 4.8: Cheetah       Figure 4.9: Antelope
           Predator Knowledge    Kills Antelope                                         Learn and Flee

Both Antelope and Cheetah agents appear to learn and adapt their

behaviors based on the emergent behaviors that are displayed in Savannah.  These

behaviors and what they might indicate are discussed in the following section.

6. Emergent Behaviors

Emergent behaviors are the result of the agent behaviors, interactions, learning

and adaptation as described above.  They are identifiable, believable occurrences of

events that emerge from complex adaptive agents interacting in a given environment. The

behaviors are present in virtually every run of the simulation, but when they appear they

may vary drastically based on when the underlying events that cause them occur.

In Savannah, we identified several possible emergent behaviors.  All of them

make sense when compared to what is expected in the real world.  Some emergent

behaviors are obvious, while others are so subtle they are difficult to differentiate from

behaviors that are programmed to occur.  Emergent behaviors noticed in multiple runs of

Savannah include: Antelope herd sizes, Antelope become faster as the species evolves

over time, Cheetah appear to loiter around Antelope feeding sites, and Cheetah eventually

resort to group tactics for hunting faster Antelope.

One of the actions Antelope in Savannah are programmed to do is to find other

Antelope.  This results in them eventually forming into herds.  While this in itself is not

an emergent behavior, the disposition of the herds appears to be.  There is no algorithm to

track or pare the herd size, yet the Antelope typically form into several herds of eight to

twenty members.  It is conceivable that all Antelope in Savannah could form one big

herd, but the simple routines that require an Antelope to eat, mate, and flee from Cheetah

all result in a moderation of herd sizes.   Within these herds the Antelope populations

typically get faster over time.
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As seen in the real world, the slower Antelope in Savannah tend to be killed at a

higher rate than the faster Antelope, although Antelope with no predator knowledge have

the same chance of being killed regardless of their speed.  The Cheetah does not have the

ability to look at an Antelope’s speed to determine which one to chase.  They simply take

up the case if they have the energy and can sense an Antelope.  As the Antelope flee, the

slower ones typically fall behind and are eaten by the Cheetah.  As one might expect to

see in the real world, it becomes more difficult for the Cheetah to successfully hunt as the

Antelope population gets faster.  Two behaviors appear to emerge to offset this

phenomenon.  First, Cheetah begin to remain closer to the Antelope feeding sites and

secondly, they begin attacking in groups as they compete for food.

In Savannah, the Cheetah appear to quickly stake out their territory and typically

remain within it as long as there are Antelope present.  As the simulation progresses and

the Antelope get faster, it takes more energy for the Cheetah to hunt.  Patterns of loitering

near Antelope feeding sites seem to develop.  This is probably explained by the fact that

the Cheetah need to conserve energy so they can continue to hunt and mate.  Once they

have identified a source of food, they do not need to roam as much to eat.  If the Antelope

population becomes fast enough or sparse enough, the Cheetah start to increase their

roaming distance.

As the Cheetah begin to roam bigger areas, they tend to encounter more Cheetah.

If the simulation progresses so that there becomes a competition for food, it appears as if

the Cheetah begin to hunt in groups to corner the faster Antelope.  This emergent

behavior is in no way programmed or expected, but does make sense.  The need for

energy appears to cause them to modify their behavior in an attempt to corner Antelope,

ensuring at least one of the Cheetah will receive an energy boost.  If they were to remain

apart, they would likely all die of starvation although there may be plenty of Antelope

remaining.

Emergent behaviors also often seem to be in the eye of the beholder.  What may

appear as emergent to one may not even be recognized by someone else.  What is

consistent is that they are non-programmed phenomena that are explainable and

identifiable when one considers all the low-level interactions that occur to make them

emerge.
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7. Windows/C++ Implementation Summary

An object-oriented architecture appears to be a very good way to implement

agent-based simulations.  It offers a structure that allows for easy, straightforward

declaration and extension.  Once the base class or classes have been identified, it

becomes very simple for other users to modify the simulation.  The Savannah

implementation showed that with a simple, well-defined architecture, the basic elements

of agent-based simulations can be achieved.  While there are perhaps many ways the

implement these simulations, it is important to note that believable outcomes will show

whether or not the architecture has truly hit the mark.

Perhaps one weakness in this implementation is the requirement to have all agents

defined at run time.  The ability to dynamically extend a running simulation is very

attractive for all the reasons discussed in previous chapters.  To take a look at how such

an architecture might be implemented, we next modeled Savannah using Bamboo.  We

named this implementation Savannah 3D.

C. BAMBOO IMPLEMENTATION

1. Introduction

The methodology behind the Bamboo architecture implementation is considerably

different from the Windows/C++ implementation, although Bamboo still uses Microsoft

Visual C++ to compile the code.  The main difference stems from Bamboo itself, which

is a toolkit that extends the functionality of the preexisting C++ libraries and then

provides an execution layer above the Windows NT kernel.  The code executed in

Bamboo runs inside this layer.  As a proof of concept for the Bamboo version, we built a

predator-prey relationship very similar to our Savannah simulation and called it Savannah

3D, since its display window provides a three-dimensional (3D) representation of the

simulation.

The following sections describe the Bamboo architecture implementation, but due

to its similarity with the Windows version, we will only highlight the areas where

Savannah 3D is different.  For that reason, the emergent behaviors subsection seen in the

Windows version will not be covered since this area did not change.
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2. Interface

Running on Windows NT 4.0, Bamboo provides the user with a command-line

interface through a DOS shell.  Modules can be loaded into or removed from the

execution core during run time with the dynamicPageModule. This is significant in three

ways.  First, it allows the modeler to create and load new agents.  Second, modelers have

the ability to remove an agent from the world.  Third, which combines the first two, a

modeler can remove an agent, redefine and reload it.  What differentiates this from the

traditional simulation methodology is that this can all be done without halting the

simulation, providing greater flexibility.  Using the dynamicPageModule also results in a

smaller executable because users only load those modules necessary for a given

simulation run.

To convert our Windows/C++ version over to Bamboo, we created five separate

modules.  The first module, agentDisplayModule, which simply creates a single-

document, OpenGL window that represents an empty 3D world.  Unlike the Windows

version, the OpenGL window used to display the simulation is fully sizeable.  The other

four modules – npsAgentModule, antelopeModule, cheetahModule, and grassModule will

be discussed in the following subsections.  Figure 4.10 shows the agentDisplayModule

with numerous instances of the Antelope, Cheetah, and Grass modules.
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Figure 4.10: Savannah 3D with Loaded Modules

Users navigate through the world using the mouse to control 3D flight.  The left

mouse button controls forward flight, while the right mouse button controls backward

flight.  The world also has three predefined views that can be invoked using the

keyboard.  The first, invoked by the spacebar, is on ground level at the origin looking in

the direction of the negative z-axis.  The second, invoked by the “t” key, is 200 units

above the origin looking straight down, and the last, “ctrl-t” is located at x=50, y=100,

and is looking back to the origin.  As users develop modules for the simulation, they can

define other keystrokes to invoke new camera viewpoints.  If a user desires any type of

output from the simulation, text can be written to the DOS shell.  Functionality that will

soon be implemented in Bamboo will provide a Graphical User Interface (GUI) where

the user will be able to change agent attributes and view output from the simulation in a

separate GUI window.
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3. Architecture

a. Overall Design

Many of the issues we encountered implementing the Windows version

regarding which data structure to use for object control and manipulation were eliminated

by using Bamboo because it has this functionality built in.  Every agent created in the

simulation is based on an underlying object class in Bamboo called bbListedClass, and

has an associated geometry, npsGeometry, that represents the agent in the virtual world.

The bbListedClass automatically places the agent objects on a control list that can be

traversed at any time by obtaining a handle to the list.  Although this is a linked-list

implementation, Bamboo is multi-threaded so we were able to fork a new thread to

control the agents’ move and sense loops.  Separating computational requirements

through the use of threads increased performance over our previous version by ensuring

the graphics engine was given access to the processor in regular intervals and allowed to

refresh the world at a decent rate.  In Savannah, the graphics draw functions were

executed sequentially in turn with the move and sense loops.  This meant that it could

only refresh the display window after all agents had completed one pass through their

move and sense loops, which caused a noticeable screen flicker as more agents populated

the world.

b. Agents

When developing Savannah 3D, most of the agent architecture was similar

to our Savannah version although we did try to further develop the class structure.   In the

Bamboo version, the focus was to design a more generic agent-based simulation that

would provide modelers greater flexibility in creating new agents that could seamlessly

plug into a running simulation.  To that end, we created a generic npsAgent class as the

base class and then extended it to create our Animal, Plant, Antelope, Cheetah, and Grass

classes. Figure 4.11 shows the class structure as it was implemented.
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[  ]

Plant
(sub class)

[id number]

Grass
(leaf class)

Animal
(sub class)

[speed, age, energy level,
 sensing range, remove, 

agent type]

NPS Agent
(super class)

[gender, pregnant, movement,
generation, death indicator,

goal for next action]

[id number]

Antelope
(leaf class)

[id number]

Cheetah
(leaf class)

Figure 4.11: Savannah 3D Class Structure

As a rule, every agent class that would eventually be instantiated in the

simulation had a module of its own, and resided as a leaf of that tree, so our simulation

had AntelopeModule, CheetahModule, and GrassModule.  Each of these modules

contains the specific class and all application functionality needed to create the agent in

Savannah 3D.  All other abstract classes to include npsAgent, Animal, and Plant were

included in the npsAgentModule.

c. Base Class

The npsAgent class was designed to implement only the basic state

variables and functionality that might be needed by all future agents.  To facilitate the

addition of many different types of agents, we created a generic agent that implemented a

base class with the following state variables  – speed, age, sensing range, and energy

level.  We also included an agent-type attribute and a Boolean flag that can tell Bamboo

to remove the agent once it is no longer needed in the simulation.  To further develop the

learning capabilities of the agents in Savannah 3D, npsAgent contains a set of vectors that

allow an agent to store and remember class names of other agents it has discovered in the

environment.  The vectors include knownPredators, knownFriends, knownEnemies,
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knownEnergySources, and unknownAgents.   If an agent discovers a new agent and

establishes a relationship with that agent, it can add the new one to the appropriate vector

and use that information to guide how it interacts with the agent in the future.  If it can

not determine the relationship, then it must add the agent to its unknown vector.  This

implementation is a slightly more robust form of memory than the simple Boolean-flag

mechanism used in Savannah.  The extra memory allows an agent to develop a better

database of information about its world and allows it to interact with the environment at

more sophisticated level.  The various benefits of this approach will be discussed later.

A location field was not required in the base class with this version

because the Bamboo npsGeometry class included with each agent object contains a 3D-

position field.  Bamboo also provides a three-element vector class that can be used to

pass or update the x, y, z coordinates of the geometry’s position field.

Since we did not want the npsAgent to define the sensing and moving

functions for all its subclasses, we included virtual functions for each to ensure that the

modeler would implement these for every agent developed for a simulation.  When a

simulation runs in Bamboo, the only way it can track the agents and allow them to update

their positions is by handling them all as npsAgent class objects.  By including the sense

and updatePosition virtual functions, Bamboo can loop through the list of active objects

(which it recognizes as npsAgents) and call the two functions.  Polymorphism allows the

simulation to dynamically link to the correct definition of the sense and move methods by

checking the derived class hierarchy until it finds where the methods are defined.

d. Subclasses

Savannah has five subclasses.  The Animal and Plant are abstract classes

that implement functionality common to all animals and plants respectively.  The next

two, Antelope and Cheetah, are subclasses of Animal, and the last, Grass is a subclass of

Plant.  Figure 4.8 shows how each of these classes contributed to our architecture.

Animal, Antelope, and Cheetah remain virtually the same as they were in Savannah.  The

new subclasses included in Savannah 3D are the Plant and Grass classes.  Plant is an

abstract class that defined attributes and methods needed by all derived plant agents.

Grass is a very simple class that extends Plant and implements a grass agent with no
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interaction or functionality.  It was created only to add grass to the simulation to provide

the Antelope with feeding areas.

4. Interactions

The interactions defined and witnessed in Savannah 3D did not differ

significantly from those in Savannah.  The one change was the elimination of the referee

that was used in our Windows implementation.  As mentioned in chapter II, the outcomes

to interactions between agents is normally decided by a referee that has knowledge of the

whole system including all agents.  The referee must decide a fair outcome and indicate

that to the agents.  This is easy to accomplish in a statically developed simulation where

all agents that will ever enter the world are known ahead of time.

In Savannah 3D, all agents are derived from the same base class which requires

them to contain enough built-in logic to learn about other agents and determine the

outcomes of interactions on their own.  It would be impossible to program a referee that

had knowledge of all potential agents that might enter the world, because Bamboo allows

new agents to be implemented after the simulation has been created and compiled.  The

overhead associated with having a referee who could dynamically learn about every agent

to ever enter the simulation would be too costly.  Also, the referee would in fact be

performing the interrogate-learn functions that all other agents would be doing, making

the referee no better than any single agent.  For these reasons, a referee in a Bamboo

implementation is neither practical nor needed.

5. Learning and Adaptation

This is probably the most important, and, as we mentioned in the Windows

architecture section, the most challenging part of creating an agent-based simulation.

From Savannah, we determined that agents should have memory and corresponding logic

that allowed them to make smarter decisions while navigating through the simulation.  A

desire to provide this prompted the creation of the dynamic vectors mentioned in

subsection c above.  Each vector allows the agent to store class-names of any agents it

encounters, into groups based on its relationship with each agent.  As the relationship
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develops or possibly changes over time, the agent can move or delete the reference to that

agent to keep track of the appropriate relationship.

In order for the memory mechanisms to benefit the agent, each agent must have

logic that takes advantage of them.  While the functionality was included with npsAgent

to manipulate the contents of each memory vector, no logic was provided to tell the agent

what to do with the information.  Since every agent pair will establish specific

relationships with each other in ways that minimize cost and maximize payoff, it would

not be possible for the base class to try to provide that logic.

To demonstrate how to implement logic that might complement the memory

provided in Savannah 3D, we implemented the same learning for Antelope that we had

done in the Windows version.  In order to facilitate an Animal agent in learning about

any predators or enemies it might have, we included a killer field in the Animal class.

Now, if an Antelope agent is killed by a Cheetah, it will set the killer value to “Cheetah”.

Any other Antelope within sensing range will see the dead Antelope and be able to

determine that the Cheetah agent was the killer.  With this knowledge, the Antelope

agents can then add “Cheetah” to their knownPredator list and act accordingly the next

time they sense a Cheetah.  Again this is a very simple example, but the goal was only to

explore the possibility of a more robust learning and adaptation method.

6. Bamboo Implementation Summary

The Bamboo toolkit provides the basis for a very dynamic implementation of

agent-based simulations.  The predefined functionality hides many of the implementation

details, so the modeler can concentrate on properly extending existing modules with well-

defined agent models.

The real attractiveness of Bamboo though, is dynamic extensibility.  The

architecture implementation of Savannah 3D displayed a rudimentary version of this

capability.  As mentioned earlier, this greatly increases the flexibility of a simulation.

For example, modelers often define entities to represent specific interactions or

relationships in the real world.  After observing simulation runs for a period of time, they

begin to identify new aspects of the entities that should be studied.  As they identify

specific attributes of the agents that should have been included in the initial
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implementation, they can use Bamboo to unplug and redefine the agent to explore new

relationships or interactions.  Conversely, the Windows/C++ implementation would

require modelers to stop simulation, redefine the agents, recompile the simulation, and

then start the simulation again.  Dynamic extensibility is a robust feature of Bamboo that

provides modelers with unlimited options when deciding on how best to model a

particular agent.

Another very nice feature of Bamboo is the ease with which simulations written

in C++ for other applications can be ported over.  Very little of the actual methodology

behind Savannah had to be changed to build Savannah 3D.  In fact, since Bamboo

provides functionality not available with other programming libraries, some of the

implementation can actually be streamlined during the conversion process.  Again, we

saw this when all of the location functionality of Savannah was removed on the

conversion to Savannah.

Perhaps the biggest benefit to this type of implementation is the fact that modelers

can create and execute simulations on multiple platforms, while the Windows/C++

implementation is constrained to the Windows OS.

D. SUMMARY

The preceding sections provide an overview of two different architectural

implementations for agent-based simulations.  The predator-prey models, Savannah and

Savannah 3D, were built to explore issues associated with developing agent-based

simulations.  Both the Windows/C++ and Bamboo designs seem to be feasible options

for building these simulations.  Both implementations also take advantage of the

functionality offered by OOP languages.  These advantages include encapsulation,

inheritance, polymorphism, and the STL.

The Windows/C++ version is a relatively straightforward implementation, in that

it is a convention easily explained and understood.  The class structure provides an ideal

way to model agents and their behaviors.  Allowing all agents to simultaneously sense

and act on simple rule sets results in realistic interactions among agents, and often

produce complex emergent behaviors that allow the researcher to conduct cognitive

experiments.
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The Bamboo version is more abstract, but in the long run, a much more attractive

implementation.  Not only does it offer all the advantages of the Windows/C++ version,

but also provides the capability to dynamically add agents to a running simulation.  This

methodology makes programming very challenging; agents must not only interact and

adapt to agents that are known at run time, they must also do so with agents that were not

defined before run time.
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V. CONCLUSIONS

A.      CONCLUSION

Both the Windows/C++ and Bamboo agent-based simulation architectures appear

to be appropriate for building an enterprise model of the Navy.  Input from subject area

experts will allow the proper agent functionality and inter-agent relationships to be

accurately defined.  Agents with the ability to learn and adapt in their pursuit of goals

will provide a robust simulation that allows leaders to view the potential outcomes of

their decisions through emergent behaviors.

While we have explored the issues of developing two types of agent-based

simulation architectures, building an enterprise model of the Navy at such a low-level is

probably not appropriate.  It appears that the best approach to take when building

SimNavy would be to create a modeling engine that contains the needed functionality to

define specific agents through an easy-to-use interface.  This would allow modelers to

focus on developing accurate models of desired agents without having to concern

themselves with code and implementation issues.  It could be developed using many of

the same ideas from the architectures we developed.  Current students in the Naval

Postgraduate School’s Modeling, Virtual Environments, and Simulation Curriculum plan

further research in this area.

B. FUTURE WORK

The following section lists future projects that could assist in further exploring the

issues associated with using the agent-based simulation methodology to build an

enterprise model of the Navy.

1.  SimNavy Agents

When developing an enterprise model of the Navy, one of the first issues that

needs to be addressed is to identify what components are required to be modeled.  Once

these components have been identified, the level to which they should be modeled, either

as individual entities or aggregated systems, needs to be studied.  Close coordination with

all Navy agencies will help with the development of the logic and functionality of these
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various Navy agents.  This in and of itself will be a very challenging task since it appears

that most of the information currently available is stove piped, with very little cross talk

between agencies.

2.  Learning and Adaptation

It is very difficult to establish a generic solution for dynamic agent learning and

adaptation.  We explored two methods for providing agents with this capability.  A very

simple Boolean flag method was used to indicate knowledge of predetermined

relationships.  The status of the flag provided access to different functionality and

triggered new behaviors, but was very limited.  In the Bamboo implementation a more

robust structure using dynamic arrays was implemented to assist in learning.  Both seem

to accomplish the goal, but is there a more efficient or dynamic way to do so?  Is there a

way to generalize learning even more?  How can this learning be tied better to

adaptation?  Future work could entail a more detailed exploration of methods to provide

agents with a robust learning ability that allows them to adapt their behaviors.

3. Networked Applications

The Savannah and Savannah 3D architectures were built to run on stand-alone

computers.  The Windows/C++ implementation is not directly portable to distributed

applications.  The Bamboo toolkit, however, is designed for networked virtual

environments, and provides an outstanding platform to build networked agent-based

simulations.  This area is wide open for research.  Probably one of the first and most

critical areas that should be studied is how and in what format does agent data need to be

passed across the network so as not to lose any of the functionality of an agent-based

model?

4. SimNavy Engine

Savannah 3D is an attempt to generalize agent-based modeling enough so that it

can be easily modified to execute many different variations of a simulation.  To build a

fully functional enterprise model of the Navy is going to require a generalized, yet very

robust architecture.  Research in this area is needed to determine what other functionality
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can be added to or implemented with Bamboo to begin building a SimNavy engine.  Such

an engine would provide a simple GUI that could be used to study the numerous dynamic

relationships that exist throughout the Navy’s structure.
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APPENDIX B: GLOSSARY

• adaptability
- Modify rules of behavior and strategies based on interactions.

• agent
- Software object with internal states and a set of associated behaviors.

• Bamboo
- Cross platform, dynamically extensible, virtual environment toolkit.

• emergent behavior
- Behavior patterns that emerge from the interactions of agents but are not inherent

to the agents themselves.

• dynamic extensibility
- Applications have the ability to dynamically reconfigure themselves by adding to

or altering their functionality during runtime.

• event
- A change of object attribute value, an interaction between objects, an instantiation

of a new object, or a deletion of an existing object.

• interaction
- An explicit action taken by an agent that can optionally be directed toward other

agents including the environment.

• model
- A physical, mathematical, or otherwise logical representation of a system, entity,

phenomenon, or process.

• simulation
- A method for implementing a model over time.  Also, a technique for testing,

analysis, or training in which real-world systems are used, or where real-world
and conceptual systems are reproduced by a model.
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